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ABSTRACT 
 
 
As resources constrain investment decisions, what combination of parameters 

most effectively cause one force to defeat another?  Using Hughes' Salvo equations, 

simulations are conducted to investigate the singular and pairwise effects of providing 

one force an advantage in its offensive power, defensive power, staying power, force 

size, and information.  The purpose is to identify specific combinations that present 

potential priorities in ship design and force planning.  Cases are examined in terms of 

fraction of forces killed and surviving, and consolidated in a comparison of fractional 

exchange ratios between the forces.  Over the range of parameters explored, when forces 

are closely matched, a defensive advantage allows a force to outlast another, execute 

damage, and limit damage incurred to its own force.  The Polya distribution of shots 

shows that the bonus gained by attaining perfect information is a significant edge, and the 

hazard of failing to deny the enemy the same. 
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THESIS DISCLAIMER 

 
The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and 

logical errors, they cannot be considered validated.  Any application of these programs 

without additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 
 

Naval planners must make decisions allocating resources for shipbuilding to 

obtain the most capable forces.  But, what characteristics provide the most capable force?  

A few primary factors that affect the outcome of naval surface combat include the 

number of missiles a ship can fire (offensive power), the number of missiles it can defeat 

(defensive power), the amount of damage it can sustain (staying power), and situational 

awareness (information).  Of course, the size of the force is also a major factor.  Using a 

stochastic simulation based on Hughes' Salvo Model, one side is given two advantages to 

examine how their interactions affect the outcome.  Using this model, shots are 

distributed to the opponent force using a uniform random distribution.  This forms the 

basis for the second part of the study. Does changing the allocation of how shots are 

distributed change the outcome of the simulation? 

 

Although we can gain insights through exploratory analysis using modeling and 

simulation, it is important to avoid making too broad of generalizations.  This study 

covers a small range of data in the variables explored, significant changes in values 

outside the range explored is likely to yield very different conclusions.  Additionally, this 

model has not been validated, so conclusions derived are based on assumptions made in 

the model, which may or may not be valid. 

 

First, blue forces are given a one unit increase in the values of offensive, 

defensive, and staying powers, an information advantage, and a one unit increase in the 

number of units in its force.  The information advantage is defined as the ability of blue 

forces to obtain perfect battle damage assessment of the outcome of its previous salvo.  

This allows blue to prevent wasting shots on units that are already out of action.  

Conclusions from the single parameter advantages show the following: 

 



 xviii

1. An increase in force strength or firepower yields a larger portion of red 
killed with a lesser effect of more blue units surviving. 

2. An increase in defensive power yields a larger portion of blue surviving 
with a lesser effect of more red units killed. 

3. An increase in staying power yields a larger portion of blue surviving with 
a lesser effect of more red units killed, but to a lesser degree than 
increasing defensive power. 

4. An increase in information yields a larger portion of red killed in combat 
where there are large numbers of offensive missiles fired, but otherwise 
has little effect. 

 

 Next, blue forces are given a one unit increase in two of the parameters to 

examine the interactions.  Conclusions from the pairwise interactions show the following: 

 
1. Information, i.e., perfect battle damage assessment, contributes less to the 

outcomes than any single parameter. 
2. A purely defensive focus of staying power and defensive power will allow 

blue to fight the battle with minor losses, but blue will be less successful 
in eliminating red forces. 

3. A purely offensive focus of force and firepower allows blue to eliminate 
virtually all of red's forces, but blue stands a risk of losing his force in the 
process. 

4. The remaining combinations have varying degrees of success in the 
amount of red eliminated and blue surviving and selection should be 
determined based on which is preferred. 

 

To summarize the effects, Table 1 provides the fractional exchange ratios, that is 

the fraction of blue forces killed to the fraction of red forces killed.  Each ratio is the 

result of 120 different combinations of parameters, each of which is simulated with 1000 

replications.  The values can be interpreted as the number of blue units a force can expect 

to lose for a single red kill. 
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Blue Advantages Fractional Exchange Ratio 
Force 0.42
Information 0.78
Firepower 0.42
Staying Power 0.35
Defensive Power 0.2
Firepower   
Defensive Power 0.12
Force    
Defensive Power 0.06
Force   
Firepower 0.26
Force   
Information 0.35
Information   
Defensive Power 0.17
Information   
Firepower 0.4
Staying Power   
Information 0.26
Staying Power   
Force 0.24
Staying Power   
Defensive Power 0.08
Staying Power   
Firepower 0.13

 

Table 1. Fractional exchange ratios for combinations for the ten cases examined 
 

The second portion of the thesis examines how applying Hughes' Salvo Model 

with a non-uniform distribution of shots impacts results of the simulation.  Historical data 

has shown that units that perform better in combat continue to do so and are attributed 

with a higher number of kills than the average unit.  If the same distribution applies to 

targeted units, then a Polya distribution of shots is an accurate selection.  Under the Polya 

distribution, a unit that has been previously targeted is more likely to be targeted on the 

next engagement.  This may be desired if a unit in the opponent force is a command and 

control ship, or perhaps if the closest ship is the largest threat.  The first exploration using 



 xx

the Polya distribution of shots is compared to the uniform distribution of shots to 

compare the differences.  The Polya distribution results in higher lethality combat, in that 

between thirty to seventy percent of the forces can expect to be destroyed on average. 

However, as a function of the distribution, it is not possible that on average a force can be 

completely eliminated.  To account for this, blue is again given an information advantage 

to allow him to recover from wasting shots on the highest probability target, the one that 

is already out of action.  The results show that for the most frequently occurring cases, 

blue is able to kill more than eighty percent of the red forces.  Thus, the importance of the 

information is significant.  However, what if red is also given this information 

advantage?  The outcome is a much higher lethality for both forces.  For over sixty 

percent of the cases observed, more than seventy percent of the forces are killed.  This 

stresses that while gaining the information advantage, it is at least as important to deny 

the opponent that same information, or both forces are more likely to be destroyed.    
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I. MODELING TO DETERMINE SHIP DESIGN 

A. THE PROBLEM 
 

Naval planners must make decisions allocating resources for shipbuilding to 

obtain the most capable forces.  What characteristics determine the most capable force?  

Are there situations in which a superior force should not engage because it faces a 

significant risk of suffering unacceptable losses by the inferior force?  Combat modeling 

can give insights to answering questions like these. 

Some primary factors that affect naval battles include a ship's firepower, speed, 

endurance, armor, and the size of its force.  Speed is a point of contention.  Although 

increases in speed have been shown to project a strategic advantage, questions arise in 

speed's significance in a tactical environment in which the threat faced is a supersonic 

missile.  With the advent of modern missiles and their counters, a defensive ability is 

added as a contributing factor, as is information on the opponent forces.  Hughes' Salvo 

Model considers the parameters of firepower, staying power, defensive power, and force 

size as the primary drivers in exploring battle outcomes in an elegantly simple model 

(Hughes, 1992).  Exploration has shown that some basic configurations, such as 

concentrating too much on firepower at the expensive staying power, should be avoided.  

There is little worth in a ship that can exterminate an entire enemy force if it can also be 

struck down in the first round of combat. 

McGunnigle extended Hughes' deterministic model into the Stochastic Salvo 

Model.  This allowed him to examine the effects of the scouting, intelligence, and 

damage assessment to determine the importance of information (McGunnigle, 1999).  

McGunnigle simulates homogenous forces, stochastically determining the number of 

shots fired and defeated based on a unit's status.  He assumes a random uniform 

distribution of shots to targeted ships.  McGunnigle assumes an information advantage in 

which the blue forces know the capabilities, status, and exact positions of enemy forces 

and allocate their weapons accordingly.  This information advantage allows blue to 

overwhelm individual red units efficiently, but cease to fire at a red unit if it is put out of 
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action.  His analysis shows that although information can contribute to an increased 

success for blue units, a force advantage (i.e., more ships) provides a more certain 

likelihood of success for blue. 

Combat models are used to attempt to gain insight into how varying combat 

parameters might affect the outcome of a battle.  The challenge is to develop a model that 

incorporates sufficient variables to capture the essence of a battle in a simple form—

exactly how simple is too simple is a point of debate (Lucas and McGunnigle, 2002).  

While it is possible to attempt to model the physics and stochastic elements of a major 

naval surface battle, doing so is perhaps not always the best course of action.  A 

simulation such as McGunnigle's Stochastic Salvo Model allows great flexibility in 

changing parameters, exposing events that may seem trivial, but in fact drive the outcome 

of the simulation.  A problem with high resolution models is the significant run time for a 

single simulation.  To produce a result with a measure that contains a measure of 

variability requires many runs.  A point estimate of the battle may be determined in a few 

hours, but to see how variable that estimate is can take days, weeks, even months, thus 

hindering their use as exploratory tools.  Furthermore, generating input data to feed large 

models may take many months. 

The alternative is a model that has relatively few parameters.  This type of model 

aggregates a wide range of variables into a single parameter in an attempt to approximate 

the essential dynamics of the situation.  Which parameters are selected is critical, as 

failure to incorporate a driver in the combat simulation will yield results that will be 

challenged as invalid for failing to incorporate that vital missing element.  However, the 

speed of such a model is orders of magnitude faster than the high resolution models, 

allowing for rapid repetitions.  Thus, if one believes the values of the parameters are 

appropriate and capture the combat drivers, then the measure can be estimated with a 

good understanding of its variability.  A second benefit of such models is that they may 

be simple enough to be solved analytically, allowing for verification of a developed 

simulation. 

For naval surface combat, such an alternative model exists, the Hughes Salvo 

Model.  Developed by Wayne Hughes, this model uses relatively few parameters and has 
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been tested using data from modern naval battles involving missile combat.  The Salvo 

Model has been extended to include a Stochastic Salvo Model variant and was used to 

explore the value of information in combat (McGunnigle, 1999).  This thesis extends the 

Stochastic Salvo Model implementation by McGunnigle to explore parameters in naval 

combat to address the following questions: 

1. What is the effect of interactions between ship characteristics? 
2. What is the effect if the shot assignment distribution is non-uniform? 
 
 

B. THE CONTRIBUTION 
 

The single effects of numerical advantage and information advantage are explored 

in McGunnigle's thesis and summarized in Chapter III.  This thesis continues that work 

by additionally examining superior staying power, firepower advantage, and defensive 

power advantages.  Are there combinations (synergistic effects) of these factors that may 

lead to enhanced performance?  Or will the model expose a combination that appears 

more capable, but in combat produces unstable results—similar to Hughes' point on the 

balance between offensive and staying power that must be incorporated into ship design? 

The Salvo Models make the assumption of a uniform distribution of shots 

between forces.  That is, the shots in a salvo are spread evenly over the opponent's force.  

From an operational standpoint this may not be the case.  If the opponent possesses a 

more capable ship, or a command-and-control ship, it is reasonable to assume that ship 

would be targeted first in an attempt to reduce the combat effectiveness of the opponent 

force.  If there are merchant ships between the forces, one opponent ship likely presents a 

better targeting opportunity than the other units in the opposing force.  There is evidence 

that shooters who have success continue to have success, and conversely those who 

struggle continue to do so (Bolmarcich, 2000).  This can be explained by superior unit 

training, a better maintained or higher performing weapon or targeting system, or simply 

a higher performing set of individuals.  The Polya distribution captures the effects of such 

a phenomenon and is used to assess whether the sensitivity of the uniform distribution 

assumption is significant. 
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II. BUILDING THE MODEL 

A. INTRODUCTION 
 

This chapter explains the basic Hughes' Salvo Model, a small excerpt of 

Armstong's work looking at stochastic effects, and the development of McGunnigle's 

simulation for analyzing combat by implementing a Stochastic Salvo Model.  Using 

Hughes' Salvo Model, and the McGunnigle's formulation, a Java simulation is created to 

explore the singular and pairwise effects of firepower, defensive power, staying power, 

force size and information advantages, as well as the exploration of a non-uniform 

allocation of shots. 

 

B. THE BASIC MODEL 
 

The basic Hughes' Salvo Model examines the fraction of forces remaining after a 

salvo of shots are fired and defended by each force, taken directly from Hughes (1992). 

 3 3

1 1

,A b B B a AB A
b a

α β− −
∆ = ∆ = . 

A = number of units in force A 

B = number of units in force B 

α = number of well-aimed missiles fired by each A unit 

β = number of well-aimed missiles fired by each B unit 

a1 = number of hits by B's missiles needed to put one A out of action 

b1 = number of hits by A's missiles needed to put one B out of action 

a3 = number of well-aimed missiles destroyed by each A 

b3 = number of well-aimed missiles destroyed by each B 
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∆A = number of units in force A out of action from B's salvo 

∆B = number of units in force B out of action from A's salvo 

The αA term represents the number of well-aimed shots by force A in a salvo.  

The b3B term represents the number of well-aimed shots that are defeated by the 

defensive systems of force B.  The difference of these terms is the number of well-aimed 

shots by force A from which force B will incur damage.  Dividing this by the number of 

shots required to put a unit of B out of action results in ∆B, the number of units put out of 

action in a salvo from force A.  Force B's well-aimed shots are computed similarly to 

determine the number of units of Force A that are put out of action. 

Hughes' Salvo Model makes the following assumptions: 

1. The striking power of the attacker is equal to the sum of the good shots 
launched by the ships of a force. 

2. Good shots are uniformly distributed over the opponent's force. 

3. Good shots will be engaged by defensive forces until the point of 
saturation is achieved, at which point all good shots will hit. 

4. Hits on a force will decrease a unit's effectiveness linearly until it is out of 
action. 

5. A ship's staying power is the number of shots required to achieve a 
mission kill, not destroy the ship. 

6. All units in one force can identify and engage all units in the other force. 

7. Losses are measured in terms of units put out of action. 

8. The key attributes in determining outcomes include striking power, 
staying power, defensive power, scouting effectiveness, soft-kill 
counteractions, defensive readiness, and training. 

9. Enemy capabilities cannot be exactly known, and thus the results must be 
based on an average of possibilities. 

10. Command and control are not explicitly considered as they are assumed to 
be incorporated into the parameters of the individual ships. 

Some important findings of Hughes include the following: 

1. Staying power is a vital parameter in that neglect can lead to unstable 
results, and it should be balanced carefully with a units' offensive power. 

2. The most significant factor is a force size advantage. 
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3. Scouting is important, particularly in a case in which there is an imbalance 
associated with high firepower and low defensive and staying power. 

4. A force that can deliver an uncountered first strike will often gain a 
significant advantage, even if the attacked force is highly superior. 

 

Armstrong (2003) explores Hughes' Salvo Model analytically to gain insight into 

how the outcome can be determined, based on the lethality level of combat for like 

forces.  He defines lethality in three terms, low, moderate, and high.  In the low lethality 

situation, the ratio of the blue force offensive power to the red force defensive power is 

less than the ratio of the blue force defensive power to the red force offensive power.  

More simply, the blue force is constructed as a force more concerned with self-

preservation than with the destruction of the enemy—and vice versa.  There exists an 

abrupt breakpoint in low lethality combat at which a force is either completely eliminated 

and the other is undamaged, or neither side can damage the opponent.  The primary factor 

in determining the outcome of low-level combat is the number of ships required to push 

the size of force over this threshold in homogenous cases.   

The moderate lethality situation occurs when one side has sufficient offensive 

power to overpower the opponent's defenses to inflict damage, but not enough to 

guarantee that the unit is put out of action in a single salvo.  In the moderate lethality 

equations, there are five outcomes, total destruction of the opponent for a force, a 

stalemate, or a case where one force destroys the opponent while sustaining damage 

itself.  Where exactly the outcome falls depends on the parameters of each force's ships.  

The high lethality situation occurs when a force has sufficient offensive power to destroy 

the opponent completely in a single salvo. This is the imbalance Hughes warns against.  

Armstrong analytically shows that as the ratio of blue's offensive power to its defensive 

power and its ability to sustain damage decreases below the ratio of number of blue ships 

to the number of red ships, red will prevail although it will suffer some damage.  If the 

unbalance becomes greater, when the ratio of blue's offensive power to red's defensive 

power is less than the ratio of the number of red ships to the number of blue ships, then 

red prevails while suffering no damage to its own forces. 
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The following procedure, adopted from McGunnigle's (1999) work is applied to 

determine the outcome from a single salvo. 

1. Determine the number of shots each unit in each force is capable of firing. 

2. Determine the number of good shots each unit is capable of firing.  A 
good shot is determined stochastically. 

3. Randomly assign the good shots of each force to the opposing force.  
McGunnigle assigned shots using a uniform distribution. 

4. For each ship in each force, determine the number of good shots a unit is 
capable of defeating. 

5. For each unit in each force, determine the number of good shots that have 
been targeted on that unit that it successfully defeats. 

6. For each unit in each force, update the status of the unit based on the 
number of shots that the unit does not defeat.  That is, account for the 
damage a unit sustains by not defeating all the shots. 

 

C. DEFINITIONS 
 

The following definitions are taken from McGunningle (1999).  Being a 

continuation of his work, the definitions and symbology are preserved for the sake of 

continuity. 

Force: A naval surface force, denoted by A or B 

Unit: A single warship 

Seen target:  An enemy unit that is targetable 

Shot: A single piece of ordnance targeted at an enemy unit 

Good shot: A well-aimed shot that will hit the enemy unit provided the enemy 

defense does not counter the shot 

Shot effectiveness: The probability that a shot is a good shot, denoted by aS for 

force A and bS for force B 

Firepower: The number of shots a unit can fire in one salvo, denoted by aF for 

force A and bF for force B 
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Striking power: The number of good shots fired by a force in a salvo, denoted by 

α for force A, and β for force B 

Out of action: A unit that has no combat capability remaining, but not necessarily 

sunk 

Unit status: A fraction between 0 and 1 inclusive, describing a unit's capability.  0 

describes a unit out of action and 1 a unit with full capability.  The unit status is denoted 

by a for force A and b for force B 

Salvo: A salvo is a near instantaneous exchange of shots between force A and 

force B, denoted by aT for force A and bT for force B 

Staying power: The number of hits required to put a unit out of action, denoted by 

a1 for force A and b1 for force B 

Defensive capability: The weapons, tactics, and employment of defensive 

measures by a unit to defeat and enemy's good shot, denoted by aC for force A and bC 

for force B 

Defensive effectiveness: The probability that a good shot is defeated by a unit, 

denoted by aD for force A and bD for force B 

Defensive power: The maximum number of shots that a unit will be able to 

effectively defend against, denoted by a3 for force A and b3 for force B 

Battle: A series of salvo exchanges between two forces, for this work, a battle will 

be between one and three salvos 

Simulation: A battle that has been replicated 1000 times to determine a mean of 

the fraction of forces killed or surviving as a measure of effectiveness 

 

D. SIMULATION MODELING COMPUTATIONS 
 

As with the definitions, the model computations are taken from McGunnigle 

(1999).  Computations that are changed for exploratory analysis later in the paper will be 

annotated explicitly. 
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Indices 

i  index of units in force A 

j  index of units in force B 

Data 

aOi  the initial status of unit i in force A before a salvo is determined 

bOj  the initial status of unit j in force B before a salvo is determined 

aCi  the defensive capability of unit i in force A 

bCj  the defensive capability of unit j in force B 

aDi  the defensive effectiveness of unit i in force A 

bDj  the defensive effectiveness of unit j in force B 

aSi   the shot effectiveness of unit i in force A 

bSj   the shot effectiveness of unit j in force B 

aFi  the firepower of unit i in force A 

bFj   the firepower of unit j in force B 

a1i   the staying power of unit i in force A 

b1j   the staying power of unit j in force B 

Variables 

α   the striking power of force A 

β   the striking power of force B 

a3i   the defensive power of unit i in force A 

b3j  the defensive power of unit j in force B 
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toAi the number of good shots targeting unit i in force A 

toBj the number of good shots targeting unit j in force B 

ai   the status of unit i in force A 

bj   the status of unit j in force B 

u  a random variable from a random uniform distribution, U[0,1] 

The detailed computations are annotated below.  A simplified explanation of the 

equations is given here, which examines force A shooting at force B for one salvo. Force 

B shooting at force A is similar.  First, the number of shots fired by force A is determined 

by multiplying the firepower of a unit by its status, for each ship.  Because it is 

nonsensical to fire a fraction of a missile, this number is forced to be an integer though a 

comparison with a uniform random number.  Next, it is assumed that not every missile 

that is can be being fired will be a good shot. For example, a missile may fail due to a 

mechanical failure or a poor targeting solution.  To compute the number of well-aimed 

shots by a ship, another random number comparison is made.  If the random number is 

less than the unit's shot effectiveness, then the result is a well-aimed shot, and the force 

striking power, α, is incremented by one.  The total number of well-aimed shots by A is 

obtained by summing over all its active ships. 

Each of these well-aimed shots is randomly assigned to the ships in force B using 

a uniform distribution.  For example, if force B consists of four ships, then the probability 

that a well-aimed shot targets a ship in force B is 1/4 for each ship in force B.  Next, the 

number of well-aimed shots force B can defeat is calculated by multiplying the defensive 

capability of a ship in force B by its status, for each ship in force B.  As with number of 

capable shots, this number must also be an integer.  It is forced to be such by a 

comparison with a uniform random number.  For each ship, for each well-aimed shot that 

targets it, another random number comparison is made.  If the random number is less than 

the unit's defensive effectiveness, then the shot is defeated and the defensive power of the 

ship is incremented by one.  This is repeated until all incoming missiles are defeated or 
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the ship exhausts its defensive shots.  If a ship runs out of defensive shots, then any 

remaining shots are assumed to hit the ship. 

After the above calculations, the result of the salvo is calculated to update the 

status of each ship.  The new status of the ship is the number of shots that were targeted 

on a ship, toBj, minus the number of shots the ship defeated, b3j, divided by the staying 

power of the ship, b1j.  This is subtracted from the initial status of the ship to determine 

its new status.  If this number is greater than, or equal to, one, then the ship is unharmed 

by the salvo.  If it is less than or equal to zero, then the unit has been put out of action by 

the salvo.  If it is between zero and one, the ship is still operational, but functions at a 

reduced capability for the next salvo. 

To compute a second salvo, the parameters are reset to their initial values, with 

the exception of the unit's status, and the computations are repeated. 

The following is the mathematic derivation of how a salvo is computed: 

Formulation (from McGunnigle (1999)) 

1 - Determine the number of good shots fired by a force in a salvo. 

 1a - Calculate the number of shots each unit in force A is capable of firing 

based on its status. 

 For all i = 1….i, 

  Shots = aFi * ai 

  If (aFi * ai) is not an integer, then 

  Shots = aFi * ai - the decimal portion of aFi * ai 

  If u < the decimal portion, then Shots = Shots + 1  (note: u is a 

uniform [0,1] random number) 
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 1b - Calculate the number of shots each unit in force B is capable of firing 

based on its status. 

 For all j = 1…j, 

  Shots = bFj * bj 

  If (bFj * bj) is not an integer, then 

  Shots = bFj * aj - the decimal portion of bFj * bj 

  If u < the decimal portion, then Shots = Shots + 1 

1c - Calculate the number of good shots each unit in force A fires. 

 For all i = 1….i, 

  For each unit, the number of shots fired is the result from 1a 

  For each shot fired, if u < aSi then the shot is good and α = α + 1 

1d - Calculate the number of good shots each unit in force B fires. 

 For all j = 1…j, 

  For each unit, the number of shots fired is the result from 1b 

  For each shot fired, if u < bSj then the shot is good and β = β + 1 

2 - Determine the distribution of the force salvo to its opponent's units. 
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 toAi and toBj are determined randomly by assigning each of the good 

shots from each force, α and β, to a unit in the opponent's force.  Each unit has 

the same probability of being targeted by any good shot from its opponent. 

3 - Determine how many good shots each unit can defeat. 

 3a - Calculate the number of good shots each unit in force A is capable of 

defeating based on its status. 

 For all i = 1…i, 

  Good shots = aCi * ai 

  If (aCi * ai) is not an integer, then 

  Good shots = aCi * ai - the decimal portion of aCi * ai 

  If u < the decimal portion, then Good shots = Good shots + 1 

 3b - Calculate the number of good shots each unit in force B is capable of 

defeating based on its status. 

 For all j = 1…j, 

  Good shots = bCj * bj 

  If (bCj * bj) is not an integer, then 

  Good shots = bCj * bj - the decimal portion of bCj * bj 

  If u < the decimal portion, then Good shots = Good shots + 1 
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 3c - Calculate the number of good shots each unit in force A defeats. 

  For all i = 1…i 

  For each shot the unit is capable of defending against, the result 

from 3a, if u < aDi, then the shot is good and a3i = a3i + 1 

 3d - Calculate the number of good shots each unit in force B defeats. 

  For all j = 1…j 

  For each shot the unit is capable of defending against, the result 

from 3b, if u < bDj, then the shot is good and b3j = b3j + 1 

The result of the salvo exchange affects each unit's status as follows: 

 30
1

i i
i i

i

toA aa a
a
−

= −   for all i = 1…i 

 If ai < 0 then ai = 0 

 If ai > 1 then ai = 1 

 
3

0
1

j j
j j

j

toB b
b b

b
−

= −   for all j = 1…j 

 If bj < 0 then bj = 0 

 If bj > 1 then bj = 1 

An example engagement can be found in McGunnigle (1999), Appendix B. 
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E. INTRODUCTORY EXPLORATORY ANALYSIS 

 

1. The Basic Scenario 

 

Many battles are simulated with one, two, and three salvo exchanges.  Each battle 

consists of one hundred twenty cases with ship parameters of force size between two and 

six, defensive capability from one to three, firepower from one to four, and staying power 

of one and two.  Thus, for each battle 120 cases are observed.  These are the cases 

McGunnigle analyzed.  For each case, every ship holds identical parameters, representing 

the homogenous case.  The measure of the battle is the fraction of blue forces surviving 

and the fraction of red forces put out of action.  Figure 1 shows the individual outcomes 

for 1000 replications to obtain statistics on the outputs (from Lucas and McGunnigle 

(2003)).  The final statistics are the means for the fraction of blue forces surviving and 

the fraction of red forces out of action. Graphs produced show the means of 120 data 

points for each battle, derived as shown in Figure 1.  The high number of replications 

ensures that the estimated means are very accurate.  Specifically, the standard error for an 

estimate is less than .016. 
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Figure 1.   Computing a mean of fraction of blue forces surviving and fraction of red 
forces killed (From Ref. 3) 

 

2. Basic Scenario Results and Interpretation 
 

As the results of the battle are in terms of fractional values, the scale of both axes 

is from zero to one.  Data points in the upper left portion of the graph represent battles of 

mutual destruction of the forces.  These data points proceed linearly from the upper left 

corner to the lower right corner representing varying levels of effectiveness of each force, 

ending at the lower right corner in which neither force is successful in putting opponents 

out of action.  Since the sides are symmetric in these runs, the outcomes must fall on this 

line.  Data points that fall above this line will represent battles in which the blue forces 

have gained an advantage over the basic scenario; conversely, blue performs worse in 

data points shown below the line. 



18 

Like Forces Using Uniform Distribution of Shots
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Figure 2.   Base scenario showing the means of 120 cases of three salvos for fraction of 

blue forces surviving to fraction of red forces out of action 
 

If the model is unbiased and blue and red forces each have an equally likely 

chance of defeating the opponent, since the measure of effectiveness for red is the 

complement of blue, then the distributions should be nearly identical, only rotated around 

the midpoint.  This is illustrated in the following two distributions, the first being the 

distribution of the means of the 120 battles of blue forces surviving, the second being the 

distribution of the means of the 120 battles of red forces out of action.  These graphs also 

illustrate that even though it is possible to achieve the extreme of each side eliminating 

the other; it is far more likely that some fraction of the forces on both sides will be 

eliminated. 
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Figure 3.   Base scenario distribution of fraction of blue forces surviving in the three 

salvo battle for 120 cases 
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Figure 4.   Base scenario distribution of fraction of red forces out of action in the three 

salvo battle for 120 cases 
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III. APPLICATION AND OUTCOMES 

A. SINGULAR EFFECTS OF FORCE SIZE ADVANTAGE, INFORMATION 
ADVANTAGE, FIREPOWER ADVANTAGE, STAYING POWER 
ADVANTAGE, AND DEFENSIVE POWER ADVANTAGE FOR 
HOMOGENOUS FORCES 
 

This section examines the effects of singular advantages using McGunnigle's 

application of the Stochastic Salvo Model.  A force size advantage is examined for a one 

ship advantage.  Firepower, defensive, and staying power advantages are incremented by 

one for the blue forces.   An information advantage makes the assumption that the blue 

force has perfect information on the last salvo's damage executed on red forces, allowing 

blue to not waste shots on the red units who are already out of action. The other 

assumptions made are identical to those covered in Chapter II, Section B.  Because blue 

forces are given advantages, blue is expected to perform better, but do specific 

combinations present better advantages than others over the range of parameters 

explored?  Data points presented in Figures 5 to 9 represent the means of the fraction of 

blue forces surviving to the means of the fraction of red forces killed for each of 120 

cases, each case being a three salvo engagement replicated 1000 times. 
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1. Effects of Force Size Advantage 

 

For each of the 120 cases, blue has one additional ship in their force.  Figure 5 

shows that on average the blue forces are much more effective in killing red, shown by 

the shifting of the data points over the 80% of red forces killed.  The cases at the lower 

right corner, in which blue has high survivability but is unable to defeat red, occur when 

there are only two or three ships per side, combined with high defensive and staying 

power and a low offensive power. 
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Figure 5.   Blue forces having a one unit force advantage for a uniform distribution of 

shots 
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2. Effects of Information Advantage 

 

For each of the 120 cases, blue has an information advantage in the ability to 

conduct perfect battle damage assessment following its shots. In the base case no damage 

assessment is performed.  Figure 6 shows that for the majority of cases the blue forces 

slightly increase their ability to destroy red.  The difference occurs in the middle portion 

of the data.  If the value of firepower is large, but less than the sum of the defensive 

power and staying power, blue performs better.  As firepower and the sum of defensive 

power and staying power reach near parity, the information yields small to negligible 

advantages for blue.  This illustrates a stamina case, in which for a large number of 

offensive weapons, the value of the information allows blue to focus its shots to slowly 

attrite red forces over time, thereby reducing the number of missiles that blue will be 

forced to counter in turn.  
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Figure 6.   Blue forces having an information advantage for a uniform distribution of 

shots 
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3. Effects of Firepower Advantage 

 

For each of the 120 cases, blue has a firepower advantage in that it can fire one 

additional offensive missile per ship than red.  Figure 7 shows the prominent affect of 

offensive power.  For the cases in which forces have the maximum firepower of four, 

combined with minimum staying power and defensive power values of one, blue destroys 

red, while suffers heavy losses to its own force.  Conversely, the only times when red 

escapes with an average of less than 20% of its force destroyed is when firepower is 

minimum, staying power and defensive powers are maximum, and the battle is limited to 

a two ship versus two ship scenario.  For most of the remaining cases, blue forces are 

successful in eliminating more than 80% of red on average. 
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Figure 7.   Blue forces having a firepower increased by one for a uniform distribution 

of shots 
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4. Effects of Staying Power Advantage 

 

For each of the 120 cases, blue has a staying power advantage of one.  Each blue 

ship can absorb one additional missile before being put out of action.  Figure 8 shows the 

frustration that the red forces have in defeating blue.  There is only a single case in which 

on average more than 80% of blue is killed.  This occurs in a two-versus-two scenario 

with firepower at four and defensive and staying power at one.  As the number of ships 

increases, the affect is less significant, but the imbalance of firepower to defensive power 

and staying power continue to be the cause of blue realizing higher losses.  For the rest of 

the cases, blue's capacity to withstand more damage allows it to outlast red, thus 

increasing its survivability and consequently its ability eliminate more of red. 
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Figure 8.   Blue forces having a staying power increased by one for a uniform 

distribution of shots 
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5. Effects of Defensive Power Advantage 

 

For each of the 120 cases, blue has a defensive power advantage of one.  Each 

blue ship has one additional opportunity to counter a missile that targets it.  Figure 9 

shows a similar effect as Figure 8, in fact the same factors that caused blue to be killed in 

the staying power case are the drivers in the defensive power case.  However, increasing 

defensive power has a more pronounced effect on the ability of blue to kill red.  Even 

though increasing staying power allows the blue forces to remain in the fight longer, blue 

does so at a reduced capability from the damage it sustains.  By increasing defensive 

power, those good shots are countered before causing damage, thus blue is more effective 

both offensively and defensively during subsequent salvos.  
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Figure 9.   Blue forces having a defensive power increased by one for a uniform 

distribution of shots 
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B. PAIRWISE EFFECTS OF FORCE SIZE ADVANTAGE, INFORMATION 
ADVANTAGE, FIREPOWER ADVANTAGE, STAYING POWER 
ADVANTAGE, AND DEFENSIVE POWER ADVANTAGE FOR 
HOMOGENOUS FORCES 

 

This section examines the effects of pairs of advantages using McGunnigle's 

application of the Stochastic Salvo Model.  A force size advantage is examined for a one 

ship advantage.  An information advantage makes the assumption that the blue force has 

perfect information on the last salvo's damage taken by the red forces, allowing blue to 

waste no shots on the red forces already out of action.  The other assumptions made are 

identical to those covered in Chapter II, Section B. Firepower, defensive, and staying 

power advantages are incremented by one for blue forces.  Because the blue forces are 

granted advantages, the question is not whether blue performs better, but rather how 

much better.  Do certain combinations of factors present a better advantage than others?  

Data points presented in Figures 10 to 19 represent the mean of fraction of blue forces 

surviving to the fraction of red forces killed for each of 120 cases, each case being a three 

salvo engagement replicated 1000 times. 

As in the singular effects cases, some common trends are observed in the results.  

In cases in which the number of ships is low, firepower is at the maximum value of four, 

and defensive and staying powers are at the minimum values of one, blue forces will on 

average suffer high losses, as the significance of their advantages is less due to the ability 

of red to eliminate blue units in a single salvo.  This is defined as the imbalance case.  

When the number of ships is low, firepower is at the minimum value of one, and 

defensive and staying powers are at the maximum values of three and two respectively, 

blue is unable to execute substantial damage to the red forces, and both sides are 

frustrated in combat, this is defined as the frustration case.  When these parameters are 

more closely balanced, the blue advantages have a larger effect on the outcome. 
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1. Effects of Force Size Advantage and Information Advantage 

 

For each of the 120 cases, blue has one additional ship in their force and possess 

an information advantage with the ability to conduct perfect battle damage assessment 

following its shots.  Both the frustration and the imbalance effects are present.  As the 

parameters become more balanced with respect to the imbalance case, blue is much more 

effective in eliminating red.  As the parameters become more balanced with respect to 

frustration, blue realizes a higher level of survivability.  
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Figure 10.   Blue forces having perfect information and a one unit force advantage for a 

uniform distribution of shots 
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2. Effects of Force Size Advantage and Firepower Advantage 

 

For each of the 120 cases blue is given an additional ship in their force and each 

blue ship can fire one more missile (i.e., an increased firepower of one) than its red 

opponent.  The added effect of offensive power is clear in Figure 11.  In the majority of 

cases, blue successfully eliminates all of red; however, it does so while taking significant 

losses to its own forces in many cases.  Even with its significant offensive advantage, 

blue cannot overcome the imbalance that results from a high firepower with respect to 

low staying power and defensive power, which are the cases in which blue suffers large 

losses.  However, with this combination, the frustration case is completely avoided, as the 

offensive advantage allows blue to overwhelm red regardless of the parameters chosen. 

This is the killer scenario in which a larger force with high offensive power commits to 

the destruction of its opponent, even at the risk of high losses to its own force. 
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Figure 11.   Blue forces having a one unit force advantage and a firepower increased by 

one for a uniform distribution of shots 
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3. Effects of Force Size Advantage and Defensive Advantage 

 

For each of the 120 cases, blue has one additional ship in its force and each ship 

has the opportunity to defend against one additional red force missile per salvo.  This 

contrasts the previous case in that the imbalance case is not present, but the frustration 

case is pronounced.  There are essentially two outcomes, either red is completely 

destroyed while blue survives with more than half its force, or all of blue survives with 

some fraction of red being killed.  This combination depicts a scenario in which blue can 

fight with small risk to its own forces, but may be unsuccessful if the primary goal is the 

destruction of red. 
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Figure 12.   Blue forces having a one unit force advantage and a defensive power 

increased by one for a uniform distribution of shots 
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4. Effects of Information Advantage and Firepower Advantage 

 

For each of the 120 cases, blue possesses an information advantage in the ability 

to conduct battle damage assessment following its shots. Each blue ship can fire one 

more missile than its red opponent.  Figure 13 shows that the imbalance is prevalent in 

that a large portion of blue can be defeated, but that the frustration cases, although 

realized, occur to a lesser degree.  This would be a viable alternative to the force and 

firepower combination if the cost to acquire the information would be less than the cost 

to increase the number of forces, but the end result is similar—destroy red forces, 

regardless of the loss to blue. 
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Figure 13.   Blue forces having perfect information and a firepower increased by one for 

a uniform shot distribution 
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5. Effects of Information Advantage and Defensive Advantage 

 

For each of the 120 cases, blue possesses the information advantage of perfect 

battle damage assessment following its shots. Moreover, each blue ship has the 

opportunity to defend against one additional red force missile.  Figure 14 shows results 

similar to the force and defensive power advantage.  As with the information and 

firepower cases, this scenario would be a good selection if the cost for acquiring the 

information would be less than the cost of acquiring more forces, understanding that in 

the process blue will realize a slightly higher attrition on average than choosing the force 

advantage option. 
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Figure 14.   Blue units having perfect information and defensive power increased by one 

for a uniform shot distribution 
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6. Effects of Firepower Advantage and Defensive Advantage 

 

For each of the 120 cases, each blue ship is able to fire one more offensive missile 

and has the opportunity to counter one additional red missile than its red opponent for 

each salvo.  This combination strikes a balance in that the imbalance effect and the 

frustration effect are both less likely.  Additionally, blue has a high level of survivability 

as well as a strong ability to destroy red. 
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Figure 15.   Blue units having a firepower and defensive power increased by one for a 

uniform shot distribution 
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7. Effects of Staying Power Advantage and Information Advantage 

 

For each of the 120 cases, blue possesses a staying power advantage in that each 

blue ship can sustain one additional missile than a red ship before being put out of action.  

Additionally, blue is given an information advantage; it can conduct perfect battle 

damage assessment following its shots.  Figure 16 shows the frustration effect is 

prevalent, but the imbalance effect is less significant.  However, when compared to the 

firepower or defensive power cases in which information is paired, the combination of 

staying power and information is less effective than either of the alternatives.  Although 

blue can outlast red and cause more damage with its advantages when compared to the 

base scenario, the effects are not as pronounced as the cases where information is paired 

with firepower or defensive power. 
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Figure 16.   Blue forces having perfect information and a staying power increased by 

one for a uniform distribution 
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8. Effects of Staying Power Advantage and Force Size Advantage 

 

For each of the 120 cases, blue possesses a staying power advantage in that each 

blue ship can sustain one additional missile before being put out of action than red.  

Additionally, blue is given an additional ship in its force.  Figure 17 shows a substantial 

shift in blue survivability.  The imbalance case, in which blue and red are simultaneously 

destroyed, has shifted such that on average, more than 40% of blue forces will survive 

while eliminating red.  As the parameters become more balanced, the fraction of blue 

forces surviving increases.  However, the frustration effect is pronounced, and although 

surviving, blue is not as successful in eliminating red.   
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Figure 17.   Blue forces having a one unit force advantage and a staying power increased 

by one for a uniform distribution of shots 
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9. Effects of Staying Power Advantage and Defensive Power Advantage 

 

For each of the 120 cases, blue possesses a staying power advantage in that each 

blue ship can sustain one additional missile than red before being put out of action.  

Additionally, blue is given a defensive power advantage in that each blue ship possesses 

one additional defensive opportunity to counter a missile that targets it.  Figure 18 shows 

that if both the advantages chosen are designed to increase blue's survivability, the 

combined effects greatly increase blue's chance of escaping with relatively small losses.  

A small benefit in the ability to kill red is observed, as blue can outlast red over the three 

salvos.  If it is expected that the battle will last over a period of many salvos, instead of 

the smaller choice of three, then the stamina of blue allows it to destroy more red units.  

However, if the battle is expected to be short and decisive, this combination will allow 

blue to escape relatively unharmed, but this is also true for red. 
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Figure 18.   Blue forces having a defensive power and staying power increased by one 

for a uniform distribution of shots 
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10. Effects of Staying Power Advantage and Firepower Advantage 

 

For each of the 120 cases, blue possesses a staying power advantage in that each 

blue ship can sustain one additional missile before being put out of action than red.  

Additionally, each blue ship is given a firepower advantage in that each blue ship can fire 

one more missile than red.  Figure 19 shows an effect similar to the defensive power and 

firepower case.  The difference is that blue is more likely to counter the missile in the 

defensive case, but in the staying power case, blue is better able to survive the hit from 

the missile.  Because a hit reduces the effectiveness of a unit, blue is less successful both 

in preserving its force and in eliminating red.  However, the combination of firepower 

and staying power advantages realize large gains to both survivability and lethality to red.  

If the cost of enhancing staying power by adding extra armor, adding bulkheads, or other 

improvements to increase staying power is less than the cost of adding defensive systems, 

then this case may be preferred to the firepower and defensive power selection. 
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Figure 19.   Blue forces having firepower and staying power increased by one for a 

uniform distribution of shots 
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C. COMPARING EFFECTS USING THE FRACTIONAL EXCHANGE 
RATIO 

 

Making a decision of parameters based on a fraction of red forces killed will yield 

a force focused on overpowering an enemy.  But, as shown in Figure 11, this may not be 

the best policy, as the survivability for blue can be fairly low.  Choosing to compare the 

models with a mean fractional exchange ratio (that is the mean of the fraction of blue 

forces killed over the 120 cases divided by the mean of the fraction of red forces killed 

over the 120 cases) allows the decision maker to compare the tradeoff value for a blue 

kill to a red kill.  A fractional exchange ratio of one is analogous to neither side having an 

advantage.  A fractional exchange ratio closer to zero indicates a larger blue advantage.  

Since the comparisons were designed with a blue advantage, the fractional exchange ratio 

is expected to be less than one for all cases.  Figure 20 shows the fractional exchange 

ratios for all cases examined.  The axis is scaled from zero to one.  The pairwise effect 

cases are identified above the axis, and the singular effect cases are identified below the 

axis.  For example, the fractional exchange ratio for the information and firepower 

advantage case is shown at .40.  This means that although blue realizes an advantage in 

combat with information and firepower increases, the effect is the least powerful of all 

the pairwise effects cases.  In this case, for every five red units killed, blue can expect to 

suffer two losses to its own forces. 

If making the decision is based purely on the fractional exchange ratio, the 

decision is to opt for a larger force with a better defensive power.  This shows the 

importance for decision makers to carefully determine the goals for their force.  By 

choosing the force and defensive option, blue can slowly attrite red without suffering 

large losses.  However, what if the situation dictates the rapid destruction of the 

opponent?  For such a match blue forces would likely survive relatively unscathed, but 

potentially red also escapes with a large portion of theirs, and the mission is failed. 

Choosing a combination that strikes a balance between blue surviving and red 

killed, such as the firepower and staying power combination, will produce a force capable 

of performing well under most circumstances.  But what if the red's only desire is to gain 

a few casualties to enhance its nation's prestige?  Then the decision may again change.  
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This highlights the role of the contribution of modeling and simulation.  Provide the 

decision makers with the best information that can be provided, and allow them to more 

knowledgably weigh the risks. 

 

 
Figure 20.   Fractional exchange ratios computed as the mean of the fraction of blue 

forces killed to the mean of the fraction of red forces killed over 120 cases 
for singular and pairwise interactions 

 
 

D. POLYA DISTRIBUTION OF GOOD SHOTS 
 

All the variants of Hughes' model assume a uniformly distributed shot distribution 

to the opponent's forces.  There is evidence that shooters do not behave in this manner.  A 

unit that has a successful engagement is more likely to have a future successful 

engagement (Bolmarcich, 2000).  It is possible that targeting of forces is assigned 

similarly.  Consider a case in which blue knows that a command-and-control ship is in 

the red force.  It is likely this would be a primary target and shots would be allocated to 

put that unit out of action first.  There is also a possibility that geometry dictates one ship 

as a priority, the closest ship may be the larger threat. Or that shipping exists between the 

forces providing a better targeting solution for one red unit over another. The Polya 

distribution captures this effect.  This section tests the uniform distribution assumption to 

examine if a non-uniform distribution produces similar results. 
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1. The Polya Distribution 

 

The Polya distribution is best explained in the classic urn description.  For this 

explanation, a ship will be analogous to an urn and a well-aimed missile targeting that 

ship is analogous to a ball.  Assume the weight of an urn is one, as is the weight of a 

single ball.  The probability of a ball being distributed to an urn is determined by the sum 

of the weight of the urns and the sum of any balls that have been previously assigned to 

urns.  Consider the case below in which there are four urns and a total of six balls to 

distribute among them. 

 

 
Figure 21.   Initial Polya distribution for four urns and six balls 

 

Because there are no balls in any urn, and the sum of the weight of urns is four, 

the probability, p, of a ball being deposited in any urn is equal to 1/4, i.e., all urns are 

equally likely to receive the ball.  Suppose that the first ball is deposited in urn number 

two, as shown below. 

 
Figure 22.   Polya distribution for six balls and four urns after one ball has been 

distributed 
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Now the sum of the urn and balls is five.  For urns one, three and four, that 

contain no balls, their probabilities of receiving the next ball are their weights over the 

total weight, or p = 1/5.  Because urn two contains its weight and the weight of its ball, its 

probability of receiving the next ball is 2/5.  This process continues for the second ball. 

 
Figure 23.   Polya distribution for six balls and four urns after two balls have been 

distributed 
 

In this case, the second ball is deposited in urn three.  With four urns and two 

balls, the total weight is now six.  With urns one and four containing no balls, the 

probability of their obtaining the next ball is only 1/6, while the probabilities of urns two 

and three are 2/6.  After just two balls have been assigned, the probability of urn one or 

urn four receiving the next ball is rapidly decreasing.  This disparity is exaggerated in the 

event that urn two had received the second ball as well.  If this had been the case, urn two 

would have had a probability of receiving the next ball of 3/6, while urns one, three, and 

four would have remained at 1/6.  Let's continue with the example, but jump to the case 

in which there is only one ball left to assign (see Figure 24). 

 
Figure 24.   Polya distribution for six balls and four urns after five balls have been 

distributed 
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This represents a common occurrence in a Polya distribution.  With the third and 

fourth balls assigned to urn three due to its increased probability of receiving a ball, urn 

three's probability increases sufficiently so that a ball being assigned to urn one, two, or 

four is unlikely.  One would expect that the final ball would most likely (with probability 

of 5/9) be distributed to urn three. 

 

2. Implementing the Polya Distribution in the Hughes Salvo Model 
 

The basic structure of the simulation remains the same.  The number of shots each 

ship is capable of shooting is determined.  The number of well-aimed shots fired by each 

ship is computed and summed over the force to determine the force striking power.  The 

change is in the assignment of shots to the opponent force.  Following the procedure 

explained in the previous section, the first shot is assigned with a uniform distribution.  

However, for the following shots, the probabilities of the targeted force ships are adjusted 

based on the results of the previous shot.  This is continued for all shots in the salvo.  

Next, as before, the number of shots each ship is capable of defeating is calculated and 

the number of shots each ship actually defeats is calculated.  Finally, the status of each 

ship is updated.  For the second salvo, the procedure is repeated, with the exception that 

the first shot of the salvo is not uniformly distributed, but is based on the probabilities 

determined by the last shot of the previous salvo. 

 

3. Effects of a Polya Distribution of Shots with no Information 
Advantage 

 

A battle is conducted with three salvos.  The battle consists of 120 cases with ship 

parameters of force size between two and six, defensive capability from one to three, 

firepower from one to four, staying power of one and two, and a Polya distribution for 

shot assignment.  For each case, every ship holds identical parameters, representing the 

homogenous case.  Each battle is replicated 1000 times to obtain a mean for the fraction 
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of blue forces surviving and a mean for the fraction of red forces put out of action for all 

120 cases.  Figure 25 shows the 120 data points for each battle. 
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Figure 25.   Polya shot distribution for 120 cases compared to uniform distribution of 

shots for 120 cases for fraction of blue forces surviving and fraction of red 
forces killed (best viewed in color) 

 

While the uniform shot distribution captures all possibilities from all forces killed 

to no forces killed, the inherent nature of the Polya distribution modifies these results.  

Due to the unlikely occurrence that every ship in a force is targeted in a salvo sufficient 

to eliminate the entire force, on average the highest expected loss is limited to 80% of the 

force.  Although there are occasions in which an entire force can be eliminated, when 

replicated 1000 times, these occasions are so infrequent that they can not increase the 

maximum average fraction of forces killed above .8. 

Examining the histograms for the frequency of fraction of red forces killed reveals 

different behaviors in the expected fraction of forces killed.  Figure 26 shows that for a 

uniform distribution the cases are spread rather evenly regardless of the fraction of forces 

killed.  However, looking at Figure 27, there is a strong skew in the distribution where 

the most common occurrences result in between 30% to 70% percent of the force being 

eliminated.  
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Figure 26.   Histogram showing the frequency of the fraction of red forces killed using a 

uniform distribution of shots 
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Figure 27.   Histogram showing the frequency of the fraction of red forces killed using a 

Polya distribution of shots 
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4. Effects of a Polya Distribution of Shots with Blue Force Information 
Advantage 

 

An information advantage is defined as to a force's ability to perfectly determine 

battle damage assessment from their shots.  As shown in the illustration of the Polya 

distribution, once a ship has had shots assigned, it begins to dominate the number of shots 

that are assigned to it in the future.  This leads to an exaggeration of the overkill effect in 

which a force expends more shots on a target than is required to eliminate it.  If a force 

could correct this by properly assessing the damage exerted to the opponent force, it leads 

to a more optimum allocation of shots, expending only the number of shots required to 

put the target out of action.  There is no requirement for a force to know the defensive 

and staying power of the opponent force, only that it can properly assess the battle 

damage.  Information in this scenario is assumed to be perfect. That is, the shooter knows 

exactly when a unit it has targeted is out of action from the last salvo. The information 

received is instantaneous and not confused with another unit.  Figure 28 shows the result 

of the 120 cases with blue possessing the information advantage allocating shots via a 

Polya distribution compared to the Polya shot distribution in which neither force has an 

information advantage. 
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Polya Information Advantage
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Figure 28.   Polya shot distribution comparing 120 cases with blue possessing an 
information advantage to 120 cases where neither has an advantage, 

displaying fraction of red forces killed to fraction of blue forces surviving 
for each case 

 

Clearly, if such information could be achieved, blue gains a significant advantage 

over the red forces.  The clustering of data in the lower right corner illustrates that when 

no forces are killed, blue can do no worse than the case of no information.  However, as 

indicated by Figure 27, most of the cases occur when the fraction of red forces killed is 

between the .3 to .7 ranges, so this is not a common outcome.  In this range of data, with 

information, blue possesses a large advantage.  Additionally, with the increase in 

information, blue can break the barrier of on average killing greater than 80% of the red 

force.  If one believes the Polya shot assumption, pursuit of such an information 

advantage is a worthy effort.  Possible opportunities to exploit this include organic 

unmanned aerial vehicle (UAV) assets focused specifically on providing real-time battle 
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damage assessment, or exploring tactics to deny an enemy this same advantage.  Perhaps 

this could be something as simple as a smoke cloud. 

 

5. Effects of a Polya Distribution of Shots with Both Blue and Red 
Forces Having Perfect Information 

 

The importance of the information has been clearly shown, but are similar results 

expected if both units are successful in exploiting this perfect information? 
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Figure 29.   Polya shot distribution comparing 120 cases with neither side possessing an 

information advantage to 120 cases where both sides have perfect 
information, displaying fraction of red forces killed to fraction of blue forces 

surviving for each case 
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Figure 29 illustrates that with both sides having perfect information, neither has 

an advantage to assist in defeating the opponent.  However, a dangerous situation exists 

in that combat is much more deadly in this environment. 
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Figure 30.   Histogram showing the fraction of red forces killed using a Polya 

distribution of shot with red and blue forces possessing perfect information 
 

Comparing Figure 30 to Figure 27, the shift to the right is clear.  Although the 

figures represent a fraction of red forces killed, because the forces are identical, the 

distribution of the fraction of blue killed is similar.  This illustrates that even though the 

benefits of obtaining an information advantage is significant, it is at least as important to 

simultaneously deny the opponent this same advantage.  A force can win with the 

information advantage, yet if they fail to deny the opponent access to the information on 

their own force, the destruction of both forces is the most common occurrence. 
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IV. SUMMARY AND CONCLUSIONS 

A. SUMMARY OF RESULTS 
 

1. Pairwise Interactions of Parameters Assigning Shots with a Uniform 
Distribution 

 

An engagement is simulated using Hughes' Salvo Model to determine the effects 

of giving the blue force a one unit increase in two different parameters.  The ship 

parameters explored are the number of offensive shots it can fire, the number of 

defensive opportunities it has to counter the missiles that have targeted it, and the number 

of missiles it can sustain before being put out of action.  The force parameters explored 

are the number of units in a force and the ability of a force to conduct perfect battle 

damage assessment on the opponent.  For each pair of parameters chosen, the simulation 

is run for 1000 repetitions to determine a mean fraction of blue forces surviving and a 

mean fraction of red forces killed for a three salvo engagement.  Table 2 shows the 

results of these ten cases, and the five individual cases. 
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Blue Advantages 
Mean Fraction of  Blue 

Surviving 
Mean Fraction of Red 

Killed 
Force 0.62 0.91 
Information 0.54 0.59 
Firepower 0.62 0.91 
Staying Power 0.81 0.54 
Defensive Power 0.88 0.59 
Firepower     
Defensive Power 0.89 0.94 
Force      
Defensive Power 0.95 0.73 
Force     
Firepower 0.74 0.99 
Force     
Information 0.72 0.79 
Information     
Defensive Power 0.88 0.7 
Information     
Firepower 0.62 0.97 
Staying Power     
Information 0.83 0.67 
Staying Power     
Force 0.95 0.72 
Staying Power     
Defensive Power 0.95 0.61 
Staying Power     
Firepower 0.88 0.93 

 

Table 2. Summary of means of fraction of blue forces surviving and means of fraction of 
red forces killed for 120 cases showing the singular and pairwise comparisons 

using a uniform distribution of shots 
 

Table 2 shows that there are combinations in which blue effectively destroys the 

red force that are better than others.  However, there are also cases in which red defeats a 

large portion of the blue forces in its defeat.  An alternative comparison is the fraction of 

blue force that is killed to the fraction of red forces that is killed, commonly called the 

fractional exchange ratio.  A fractional exchange ratio of one indicates neither unit has an 

advantage in the engagement.  A fractional exchange ratio that approaches zero indicates 

a larger advantage for blue.  Table 3 shows the results of the fractional exchange ratio 

over the ten cases explored. 
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Blue Advantages Fractional Exchange Ratio 
Force 0.42
Information 0.78
Firepower 0.42
Staying Power 0.35
Defensive Power 0.2
Firepower   
Defensive Power 0.12
Force    
Defensive Power 0.06
Force   
Firepower 0.26
Force   
Information 0.35
Information   
Defensive Power 0.17
Information   
Firepower 0.4
Staying Power   
Information 0.26
Staying Power   
Force 0.24
Staying Power   
Defensive Power 0.08
Staying Power   
Firepower 0.13

 

Table 3. Summary of fractional exchange ratios from the singular and pairwise effects 
using a uniform distribution of shots 

 

Table 3 shows that the best scenario occurs when blue concentrates on defensive 

power and an increase in force size.  This is because while a potentially large portion of 

the red forces are destroyed, blue remains undamaged in most cases.  As the battle 

progresses, blue is able to attrite, but red is largely ineffective at penetrating blue's 

defensive capability.  It is important not to over generalize the significance of these 

results, as these represent the effect of examining only a one unit increase to any of the 

parameters.  Without running sensitivity analyses, to claim that a single combination of 

parameters generates the most significant gain in blue performance is dangerous.  

However, focusing investment on parameters that enhance survivability offers promise. 
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What can be declared is that over the range of data observed, if the primary goal 

weighs the value of a blue surviving higher than that of a red kill, then the force and 

defensive power combination is the best alternative.  This statement contains two 

qualifiers.  First, one must accept the range of data as acceptable and within the range that 

will likely be encountered in a real world scenario.  Second, the measure of performance 

is clearly laid out.  If this measure changes to, say, defeat all red units and accept a 

predetermined acceptable level of loss for blue forces, then a different selection of 

parameters is recommended.  This is why decision making is difficult, and the role of 

modeling is to provide the decision makers with the most complete, accurate, and concise 

data possible, so that they can make the most informed, and hopefully best, decision 

possible.  As tables 2 and 3 show, even small differences in capability can result in big 

differences in outcome. 

 

2. Using a Polya Distribution for Assignment of Shots 
 

An assumption made in Hughes' Salvo Model is that shots are uniformly 

distributed among the opponent force.  That is, each ship is equally likely of being 

targeted by any missile.  An engagement is simulated using Hughes' Salvo Model to 

determine the effects of assigning shots to the opponent force using a Polya distribution.  

The Polya distribution weights ships that have been targeted previously as being more 

likely to continue to be targeted.  This mirrors a tactic of concentrating fire on one enemy 

to defeat it before selecting the next target.  There is still a chance that a different 

opponent ship will be targeted, but as more shots target the original target, the 

probabilities of such a case decrease.  120 cases are simulated between like forces 

varying the parameters of each force by case.  The ship parameters explored are the 

number of offensive shots it can fire, the number of defensive opportunities it has to 

counter the missiles that have targeted it, and the number of hits it can withstand before 

being put out of action.  The force parameters explored are the number of units in a force, 

and the ability of a force to perfectly determine the battle damage assessment of the 

opponent to prevent wasting shots.  The simulation is run for 1000 repetitions to 
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determine a mean fraction of blue forces surviving and a mean fraction of red forces 

killed for a three salvo engagement. 

The assumption of a uniform shot distribution allows for the full spectrum of 

results, from both forces being destroyed to neither force able to exact damage on the 

opponent, with any case being equally likely.  With a Polya distribution of shots, this 

changes because no more than eighty percent of any force can be defeated, on average.  

The most frequent occurrence shows that between 30 to 70% of the red force is expected 

to be destroyed.  This is due to the nature of the Polya distribution in that a ship that has 

been destroyed will continue to draw fire until the end of the engagement, exacerbating 

the overkill effect that can occur in Hughes' Salvo Model.  To correct for this, blue is 

given an information advantage. 

Blue forces are given the benefit of being able to perfectly determine a battle 

damage assessment of the opponent forces after each blue missile is fired.  This corrects 

the problem with the Polya distribution in that a unit will only be targeted until it is put 

out of action.  After this, salvos will be allocated to the remaining ships.  Thus, missiles 

are not wasted on units that are already eliminated. 

The results (see Figure 28) show that when blue is given an information 

advantage it can do no worse and in most cases performs better than it did in the case 

with no information.  Additionally, blue can defeat more than 80% of the red forces in 

many scenarios, demonstrating that for identical forces the information advantage alone 

is sufficient to tip the scale of the battle in favor of blue. 

The previous example showed the importance of being able to diagnose the 

effects of the previous shot, denying the enemy the ability to assess his shots is similarly 

important.  Figure 29 illustrates that although neither holds an advantage in combat, the 

results are more deadly for both sides.  In over sixty percent of the cases, both forces will 

suffer losses of more than seventy percent. 

Therefore, for a targeting tactic in which targets are prioritized, being able to 

ascertain the results of prior engagements is significant to defeat more of the opponent 

force.  However, if it is believed that the opponent is also following this same strategy, 
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effort must be made to deny this information, or more blue force casualties will be 

incurred in order to destroy the enemy. 

 

B. RECOMMENDATIONS FOR FOLLOW ON RESEARCH 
 

1. Increasing Range of Parameters 
 

Exploring a single unit increase over the parameters reveals how the variables 

interact.  However, there is a point at which increasing the parameter further is not 

reasonable.  For example, staying power, which was shown as a vital parameter to keep 

balanced, is probably infeasible to be increased to a value of (say) ten.  A ship able to 

withstand ten missile hits and not be put out of action would probably be cost prohibitive 

to build.  The next question then becomes, how high can offensive power or force be 

pushed so that staying power remains relatively balance? 

Additionally, what if the single parameters are increased to more than one unit of 

advantage, how does it affect the results?  Past a certain point it will be difficult to make 

comparisons as it is likely that all of blue will survive and all of red will be killed.  But 

could it be so significant that the same results would be realized over a single salvo?  If 

so, how large would the increase need to be to induce these results? 

 

2. Comparison of Polya to Uniform Distribution with Respect to 
Interactions 

 

Application of the Hughes Salvo Model using a uniform shot distribution has 

shown interesting interactions between pairs of parameters.  It has also been shown that 

the Polya distribution assuming perfect battle damage assessment leads to a higher 

fraction of red killed for like forces.  The natural extension is to carry this same 

investigation of pairwise comparisons to the Polya perfect information model to explore 

if the fractional exchange ratio skews higher in favor of blue. 
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3. Effect of a Standoff Capability 
 

The Hughes Salvo Model assumes that every unit can target every other unit.  

What would the effect be under the uniform and Polya distributions of a force that 

possessed a unit with sufficient range that could engage the opponent without placing 

itself in range of the opponent's weapons?  One would expect that blue would naturally 

perform better if it possessed this capability, but does it outweigh the benefit of 

increasing a parameter of standard blue forces parameters?  Or is it simply an advantage 

that helps sometimes but is not crucial to the outcome of the engagement. 

 

4. Exploration of Hughes Salvo Model with Different Distribution for 
Assignment of Shots 

 

The Polya distribution was addressed as a possible alternative to shot distribution 

based on a behavior that shooters may follow.  This of course is only one possibility of 

numerous distributions that can be explored.  Perhaps a different distribution will provide 

an insight into how targets should be allocated to best defeat red forces while preserving 

blue survivability. 

 

5. Comparisons using Heterogeneous and/or Asymmetric Forces 

 
This thesis explored cases of like forces, with the exception of when blue is give 

advantages as indicated.  However, if the United States were to engage in naval combat at 

present, it is most likely not going to occur with forces of comparable strength.  By 

estimating parameters of current combatants based on their design, simulations can be 

developed that are more realistic in the form of tailored scenarios.  For example a surface 

action group facing a set of gunboats equipped with modern missiles. 
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6. Cost Based Comparisons 

 

Analysis conducted in this thesis does not consider the costs of granting 

advantages to forces.  Although a combination of staying power and force size may be 

desirable, it is costly, requiring selecting a less attractive alternative due to budget 

constraints.  There is obviously a hierarchy of costs, i.e., adding a ship is most likely the 

most expensive option, followed by perhaps increasing staying power.  However, is 

adding a ship more cost effective than increasing firepower and defensive power?  Or, is 

it more cost effective to build two smaller, less protected, offensive ships than a single 

ship that can “do it all”?  Once an estimate of what it costs to add a capability is 

determined, and accounting for expected combat losses by choosing those capabilities, 

some effective cost-benefit measures can be gained. 

 

7. Tactics versus Procurement 

This thesis focuses on design, with little consideration of tactics.  For the tactical 

commander, the decision to add a unit of staying power is moot.  What he can affect is 

the information, force size, the training of his force, or how his subordinate units 

prioritize targeting.  It would be interesting to take the perspective of a force commander 

and investigate how changing the parameters he can tactically exploit yield changes in 

the battle. 
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